

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-13/0204 of 10/11/2015

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S Trade name of the **ROCKPANEL Lines²**, 8 mm and 10 mm tongue and construction product: groove panels finish Colours/Rockclad Product family to which the Prefabricated mineral wool boards with organic or above construction inorganic finish and with specified fastening system product belongs: Manufacturer: ROCKWOOL B.V. Konstruktieweg 2 NL-6045 JD Roermond Tel. +31 475 353 000 Fax +31 475 353 550 **ROCKWOOL B.V. / ROCKPANEL Group** Manufacturing plant: Konstruktieweg 2 NL-6045 JD Roermond 24 pages including 8 annexes which form an integral This European Technical part of the document Assessment contains: This European Technical European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed Assessment is issued in mineral wool boards with organic or inorganic finish accordance with and with specified fastening system **Regulation (EU) No** 305/2011, on the basis of: The previous ETA with the same number and validity This version replaces: from 2013-04-22 to 2019-04-22

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product General

ROCKPANEL Lines² tongue and groove panels, thicknesses 8 and 10 mm, finish Colours/Rockclad is made from prefabricated compressed mineral wool panels with thermo-hardening synthetic binders. The tongue and groove panels are fastened to timber subframes. Fastening of the 8 mm panels to the timber subframe is carried out with corrosion resistant fixing clips with screws.

Fastening of the 10 mm panels to the timber subframe is carried out with corrosion resistant nails or screws.

Mechanical fasteners and aluminum profiles are specified by the ETA-holder.

The ROCKPANEL Lines² panels are surface treated with a two-layer water-borne polymer emulsion coating on one side, in a range of colours.

The physical properties of the panels are indicated in Table 1.

Table 1	
Property	Value
Thickness and tolerances	$8 \pm 0.5 \text{ mm}$ /
	$10 \pm 0.5 \text{ mm}$
Length, max	3050 mm
Panel width / working width	S 8:164/151-156 [a]
	XL 8: 295/282-287 [a]
	S 10 : 164/146
	XL 10 : 295/277
Panel width tolerances	Nominal $\pm 1 \text{ mm}$
Density, nominal and	1050 kg/m ³ -150 / +150
tolerances	
Bending strength, length and	$f_{05}\!\geq 27~N/mm^2$
width	
Modulus of elasticity	$m(E) \ge 4015 \text{ N/mm}^2$
Cumulative dimensional	Length: $\leq 0,085$ %
change according to EN 438-	Width: $\le 0,084 \%$
2	
Thermal conductivity	0,37 W/(m • K)
Coefficient of thermal	$\alpha = 10,5 \cdot 10^{-6} [K^{-1}]$
expansion, length and width	
Coefficient of moisture	\leq 0,302 0,317 mm/m
expansion 23 °C/50 %RH to	after 4 days
92 %RH	
[a]: min/max working width	

Finish

The finish is indicated in Table 2. The coatings are provided in a number of colours.

Table 2	
ROCKPANEL Lines ²	Colourpaint (water-borne
	polymer emulsion coating)

The colourfastness of the panels is indicated in Table 3.

Table 3	
Property	Value (EN 20105-A02)
Colour fastness after	RockPanel Lines ² :
5000 hours artificial	3-4 or better
weathering	

Subframes

The panels are attached to the building by fixing to a subframe of wood.

The vertical battens should have a minimum thickness of 28 mm (solid wood).

Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374, can be used (Ultralam R, CE 0672-CPD-I)

Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required, select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

Joints

The horizontal seams are automatically covered by the overlaid board.

Horizontal application Lines² 8 mm and 10 mm:

If all the joints of the tongue and groove panels are located between the vertical battens of the subframe, a gasket on the subframe is not required. In the case vertical joints are collected on the subframe, the durability of the timber has either as a natural or an acquired characteristic durability as the result of appropriate preservative treatment.

Aluminum profiles

A ROCKPANEL starting profile "K" (Figure 1) can be used for placement of the lowest section of Lines².

In vertical use of Lines² 10 mm, the horizontal joints between the panels are made with a ROCKPANEL "A" extruded chair profile or equivalent. The chair profile has an overlap of at least 15 mm on the board above the profile. The Lines² 8 mm cannot be used in vertical applications.

[a] : min/max working width

Lines² 10 mm: If all the joints of the tongue and groove panels are located between the vertical battens of the subframe, a gasket on the subframe is not required. Lines² 8 mm: no requirement for the use of gaskets.

Fasteners Lines² 10 mm

The panels are mechanically fixed to a vertical or a horizontal timber subframe. The mechanical fastening to timber battens is carried out with either stainless steel flattop screws $3,5 \times 30$ mm no 1.4301, 1.4401 or 1.4578 (EN 10088) or Rockpanel ring shank nails $2,1/2,7 \times 27$ mm no 1.4401 or 1.4578 (EN 10088); see Table 15 and Table 14.

Fasteners Lines² 8 mm

The panels are mechanically fixed to a vertical timber subframe. The mechanical fastening to timber battens is carried out with stainless steel clips no 1.4310, fixed with round-top screws 3,5 x 25 mm no 1.4301; see Table 16. *Remark: In the case a ROCKPANEL strip is used between the back of the clip and the front of the batten, the length of the screw shall be increased with the thickness of the strip.*

The maximum fixing distances and edge distances appear from the tables in Annex 2 and 3, the hole diameter from Table 13. The design load and characteristic load appears from annex 2 and 3 of the ETA.

Intended use

The panels are intended for external cladding according to Figure 1 and for fascias and soffits. The cladding on vertical or horizontal timber battens with mechanically fixed panels can be carried out with ventilated cavities at the back.

2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding according to Figure 1 and for fascias and soffits.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years, provided that they are subject to appropriate use and maintenance.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.	2 Safety in case of fire (BWR 2)	
	Characteristic	Assessment of characteristic
	Reaction to fire of the board in its intended	The aluminum or steel profiles are classified as Euroclass A1
	use as a cladding kit	Classification of panels: see Table 4

The panels have been classified in accordance with EN 13501-1 with the following parameters:

Table 4. Euroclass class	ssification of differen	nt constructions with RO	CKPANEL Lines ² panels	8
Fixing method	Ventilated or		Vertical wooden subfra	me
	non-ventilated		Lines ² in the thickness	es
		8 mm [a]	10 mm	8 mm
Mechanically fixed	Ventilated	B-sž	2,d0	C-s2,d0

[a] With the use of 8 mm ROCKPANEL strips on the vertical battens; width of the strip 15 mm at both sides wider than the batten

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in Table 4 is valid for the following end use conditions:

Mounting:

- Mechanically fixed to a wooden subframe
- The boards are backed with min. 40 mm mineral wool insulation density 30-70 kg/m³ according to EN 13162 with a cavity between the back of the board and the insulation

Substrates:

• Concrete walls, masonry walls

Insulation:

- The panels are backed with min. 40 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 between the battens and min. 50 mm with density 30-70 kg/m³ according to EN 13162 kg/m³ behind the battens without air gap
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification
- The test result of a test with mineral wool insulation shall be valid, without test, for the same type of panel used without insulation, if the substrate chosen according to EN 13238 is made of panel with Euro-class A1 or A2 (e.g. fibres-cement panel).

Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel with aluminum or steel frame
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- Unfilled
- The depth of the cavity is minimum 28 mm
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation behind the subframe

Joints:

Horizontal application Lines² 8 mm and 10 mm

• Vertical joints are open without gasket backing or ROCKPANEL strip backing as described in Table 4; the horizontal seams are automatically covered by the overlaid board.

Vertical application of Lines² 10 mm

• An open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminum profiles

The classification is also valid for the following product parameters:

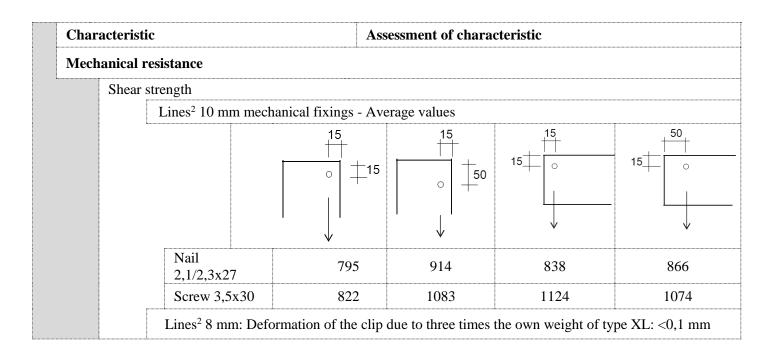
Thickness:

- Nominal 8 mm, individual tolerances \pm 0,5 mm
- Nominal 10 mm, individual tolerances \pm 0,5 mm

Density

• Nominal 1050 kg/m³ , individual tolerances -150 / +150 kg/m³

Characteristic	Assessment of characteristic
Content, emission and/or release of dangerous substances	Use category: Outdoor S/W2 The kit does not contain/release dangerous substances specified in TR 034, dated April 2013*), except Formaldehyde concentration 0,0105 mg/m ³ Formaldehyde class E1 The used fibres are not potential carcinogenic No biocides are used in the ROCKPANEL boards No flame retardant is used in the boards No cadmium is used in the boards
Water vapour permeability	s_d declared : \leq 1,8 m at 23° C and 85% RH
	The designer shall consider the relevant needs for ventilation heating and insulation to minimise condensation in service.
Water tightness of joints	No performance determined
Drainability	See section 'Aspects related to the performance of the product


Characteristic	Assessment of characteristic
Vind load resistance	
Mechanical properties of panels	See section 1, Table 1
Design value of axial loads	
	design values X_d may be calculated as indicated in the ETA (see elow is mentioned the safety factor which has been used in the
Fixing position and design value X_d of the axial load M/C (Middle/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade) <i>Remark:</i>	Lines² 8 mm - clip with screw fixing: Fastener specification according to Table 16. Table 10 and 11, row (27) and (28) contain the design value of the axial load $X_d = X_k / \gamma_M$ for the different fixing locations. Tables include wind suction results according to "wind suction and pressure resistance" row (9) and (10).
Design value X_d obtained by dividing the characteristic value X_k by a partial factor γ_M : $X_d = X_k / \gamma_M$ The design value X_d of a material property can be expressed in general terms as $X_d = \eta \times X_k / \gamma_m$;	Lines² 10 mm with screw fixing: Fastener specification according to Table 15. Table 6 and 7, row (26) and (27) contain the design value of th axial load $X_d = X_k / \gamma_M$ for the different fixing locations and board thicknesses. Tables include wind suction results according to "wind suction and pressure resistance" row (9) and (10).

γ_m ROCKPANEL = 1,6	Lines² 10 mm with nail fixing:
Conversion factor $\eta = 0,8$ (aged bending	Fastener specification according to Table 14.
strength divided by the f ₀₅ (Table 17,	Table 8 and 9, row (26) and (27) contain the design value of the axial load $X_d = X_k / \gamma_M$ for the different fixing locations and board thicknesses.
Annex 6)	Tables include wind suction results according to "wind suction and pressure resistance" row (9) and (10).

Characteristic	Assessment of characteristic
Wind load resistance	
Pull/out and pull/through resistance	e of fasteners and mechanical resistance of boards
Pull-out resistance of fasteners	Lines² 8 mm - clip with screw fixing: Fastener specification according to Table 16. Table 10 and 11 row (15) and (16) contain the characteristic withdrawal capacity F_{ax} for both strength classes C18 and C24 according to EN 338. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M . Row (27) and (28) contain the design value X_d of the axial withdrawal capacity for both strength classes C18 and C24.
	Lines ² 10 mm with screw fixing: Fastener specification according to Table 15. Table 6 and 7 row (15) and (16) contain the characteristic withdrawal capacity F_{ax} for both strength classes C18 and C24 according to EN 338. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M . Row (26) and (27) contain the design value X_d of the axial withdrawal capacity for both strength classes C18 and C24.
Pull-out resistance of fasteners	Lines² 10 mm with nail fixing: Fastener specification according to Table 14. Table 8 and 9 row (15) and (16) contain the characteristic withdrawal capacity F_{ax} for both strength classes C18 and C24 according to EN 338. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M . Row (26) and (27) contain the design value X_d of the axial withdrawal capacity for both strength classes C18 and C24.
Pull-off resistance of panels	 Lines² 8 mm - clip with screw fixing: Fastener specification according to Table 16. Table 10 and 11, row (4) contain the characteristic pull-off for six different fixing locations. Row (7) contains the design value of the pull-off resistance for the different fixing locations.

Pull-through resistance of panels	 Lines² 10 mm with screw fixing: Fastener specification according to Table 15 Table 6 and 7, row (5) contain the characteristic pull-through for two different fixing locations. Row (7) contains the design value of the pull-through resistance for the different fixing locations.
	Lines ² 10 mm with nail fixing: Fastener specification according to Table 14 Table 8 and 9, row (5) contain the characteristic pull-through for two different fixing locations. Row (7) contains the design value of the pull-through resistance for the different fixing locations.

Characteristic	Assessment of characteristic
Wind load resistance	
Wind suction and pressure resistance	
Resistance to wind load M/C or A/B/C	C or D/E/F corrected for f_{05} declared (27 N/mm ²).
Average strength (N) Lines ² 8 mm - clip with screw fixing	Lines ² S - Annex 3.1 Table 10: location A/B/C: 168/168/168 location D/E/F: 312/312/312 Lines ² XL - Annex 3.2 Table 11: location A/B/C: 184/184/184 location D/E/F: 272/272/272
Average strength (N) Lines ² 10 mm with single screw fixing	Lines ² S - Annex 2.1 Table 6: location M/C: 574/170 Lines ² XL - Annex 2.1 Table 6: location M/C: 596/231
Average strength (N) Lines ² 10 mm with double screw fixing	Lines ² S - Annex 2.2 Table 7: location M/C: 592/170 Lines ² XL - Annex 2.2 Table 7: location M/C: 714/231
Average strength (N) Lines ² 10 mm with single nail fixing	Lines ² S - Annex 2.3 Table 8: location M/C: 325/241 Lines ² XL - Annex 2.3 Table 8: location M/C: 377/297
Average strength (N) Lines ² 10 mm with double nail fixing	Lines ² S - Annex 2.4 Table 9): location M/C: 562/241 Lines ² XL - Annex 2.4 Table 9: location M/C: 695/297
Average failure load N/m ² Lines ² 8 mm - clip with screw fixing	Lines ² S - Annex 3.1 Table 10: location A/B/C: 3156 location D/E/F: 2426 Lines ² XL - Annex 3.2 Table 11: location A/B/C: 1914
Average failure load N/m ² Lines ² 10 mm with single screw fixing	location D/E/F: 1171 Annex 2.1 Table 6 Lines ² S: location M/C: 5110/3700 Lines ² XL: location M/C: 2797/2647
Average failure load N/m ² Lines ² 10 mm with double screw fixing	Annex 2.2 Table 7 Lines ² S: location M/C: 5272/3700 Lines ² XL: location M/C: 3351/2647
Average failure load N/m ² Lines ² 10 mm with single nail fixing	Annex 2.3 Table 8 Lines ² S: location M/C: 2895/5243 Lines ² XL: location M/C: 1768/3400
Average failure load N/m ² Lines ² 10 mm with double nail fixing	Annex 2.4 Table 9 Lines ² S: location M/C: 5006/5243 Lines ² XL: location M/C: 3264/3400

Characteristic			Assessme	Assessment of characteristic		
mpact resistance [a	ι]		t.			
Table 5 Shatter	properties -	- Degrees of e	exposure in use			
			product 'Line	es ² ' 8 and 10 m	m	
energy J			category IV	category III	category II	category I
	0,5 kg	1	Pass			
impact by hard	0,5 kg	3		Pass	Pass	Pass
body	1 kg	10			damaged by bottom	impact at the
[a] For 'definition	of use catego	ory' see Table	20			

Characteristic	Assessment of characteristic				
Hygrothermal behaviour					
Resistance to Hygro-thermal cycles	Pass				
Dimensional stability	See Section 1, Table 1				
Resistance to Xenon Arc exposure	Pass				

*) In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

Aspects related to the performance of the product All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V. / ROCKPANEL Group

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / ROCKPANEL Group in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label the website is printed which guides the end user to the most actual information.

For non-ventilated use, the substrate shall be airtight.

The boards are in general mounted with a joint width of between 5 and 8 mm (and a minimum of 3 mm).

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The cladding kit shall be designed and installed so that water which penetrates in the air space or condensation water shall be drained out of the installed kit without accumulation or moisture damage or leakage into the substrate or the wall cladding kit

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.

For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

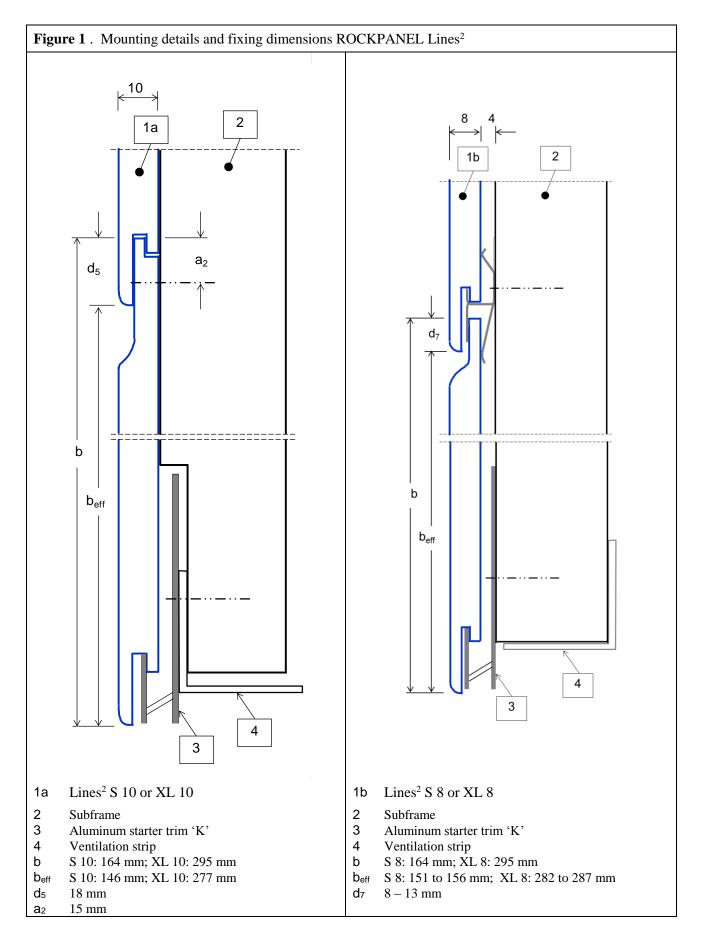
The panels should not be taken into account when designing a timber stud wall to resist racking forces.

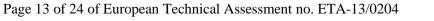
The holes for the fixings are drilled into the panels not less than 15 mm from a vertical edge and 15 mm from a horizontal edge (see Tables 6, 7, 8, 9 and 12) The panels are fixed making sure that the screws are not overtightened.

Panel fixing with fixed points and moving points in accordance with Table 13.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system


According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

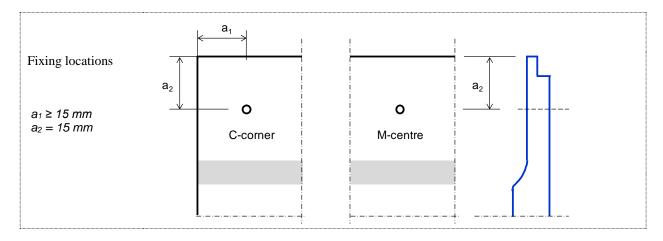
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark

Issued in Copenhagen on 2015-11-10 by

Thomas Bruun Managing Director, ETA-Danmark

Annex 1

Page 14 of 24 of European Technical Ass	sessment no. ETA-13/0204
---	--------------------------

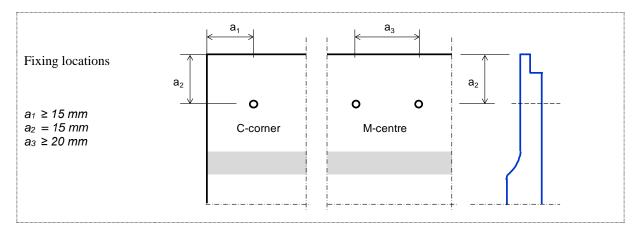

	le 6: Lines ² 10 mm -					•	
	bination flat-top screw 3	3,5x30 and	tongue 6,3 mm, with a	$\alpha \ge 30^\circ$ [e] corr			/mm²).
Tong	gue of Lines ² 10 mm			6,3 mm			
	tion of the fixing in the p	oanel			M-centre (1 screw) C-corner (1 screw		
Panel type			S	XL	S	XL	
pull-	through N (corrected for		m^2)				
	characteristic pull-through N			407	407	438	438
	material factor ROCKPA				,0		,0
	design value X_d of the			204	204	219	219
winc	l suction (corrected for a		nm^2) single screw	1		1	
	average wind load in N/m ²			5110	2797	3700	2647
	average strength N			574	596	170	231
	material factor ROCK				,0		,0
	design value X_d of the	pull-throug	h N	287	298	85	116
-	drawal capacity						
	characteristic withdrawa						
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	538	[b]	538	3 [b]
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg}/{\rm m}^3$	578	[b]	578	8 [b]
		modif	ication factor for kmod	k _{mod} [a]			
	axial withdrawal capaci	ty F _{ax,k,Rk} . k	mod [a] [b] [c] [d]	•			
	strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg}/{\rm m}^3$	538 •	• k _{mod}	538	• k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg}/{\rm m}^3$	578 •	• k _{mod}	578	• k _{mod}
	material factor (NA	to) EN 199			$\gamma_{\rm M} = 1,30$ [with	drawal capacity	1
	design value X_d of the a	,	0		, , ,	1 .	-
	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	414	• k _{mod}	414	• k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	445 •	• k _{mod}	445	• k _{mod}
desi	gn value of the axial lo	ad $X_d = X_k$	/ γ _M N	I	ninimum valu	e of the rows	s:
Γ	strength class	C18	$\rho_{\text{k}}=320~kg/m^3$	(7)(12)(23)	(7)(12)(23)	(7)(12)(23)	(7)(12)(23)
	wood (EN 338)	C24	$\rho_{\text{k}}=350~kg/m^3$	(7)(12)(24)	(7)(12)(24)	(7)(12)(24)	(7)(12)(24)
	board span b			600			
	fixing distance a (corre	esponds with	b _{eff} in Fig. 1)		Type S: 14	5 / XL : 277	

[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 22,5/6 = 3,2 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

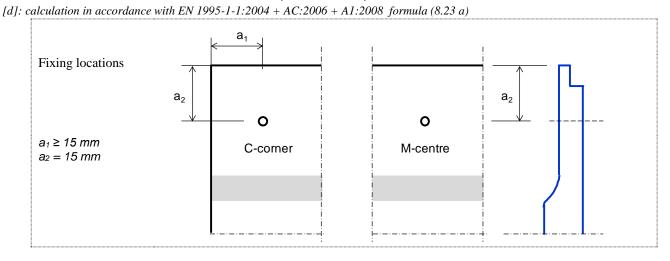
[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)


Table 7: Lines² 10 mm - Characteristic axial load X_k and design value of the axial load $X_d = X_k / \gamma_M$ for the								
	bination flat-top screw 3	,5x30 and to	ongue 6,3 mm, with a	$\alpha \ge 30^\circ$ [e] corr	rected for fos d	eclared (27 N/	mm²).	
Tor	igue of Lines ² 10 mm				6,3 mm			
loca	ation of the fixing in the p	anel		M-centre	M-centre (2 screws) C-corner (1 screw)			
	el type		-	S	XL	S	XL	
pull-through N (corrected for fo5 = 27 N/mm ²) single screw				1				
	characteristic pull-through N			407	407	438	438	
	material factor ROCKPA		ufacturers declaration)		,0		,0	
	design value X_d of the pul	*	2	204	204	219	219	
	d suction (corrected for fo		n^2) with double screw	w 5272	I		I	
	U	verage wind load in N/m ²			3351	3700	2647	
	average strength N			592	714	170	231	
	material factor ROCKPA		ufacturers declaration)		,0		,0	
	design value X_d of the pul	I-through N		296	357	85	116	
	ndrawal capacity							
	characteristic withdrawal	capacity Fax,	к,Rk [b] [c] [d]	· · · · · · · · · · · · · · · · · · ·				
	strength class	C18	$\rho_{\text{k}}=320 \ kg/m^3$	538 [b]		538 [b]		
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	578 [b]		578 [b]		
		modific	ation factor for kmod	k _{mod} [a]				
	axial withdrawal capacity	Fax,k,Rk . kmod	[a] [b] [c] [d]					
	strength class	C18	$\rho_{\rm k}=320~kg/m^3$	538 • kmod 53		538	• k _{mod}	
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg/m^3}$	578 •	• k _{mod}	578	• k _{mod}	
	material factor (NA	to) EN 1995			$\gamma_{\rm M} = 1,30$ [with	drawal capacity		
	design value X_d of the axi	· ·	-	1				
	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	414 •	• k _{mod}	414	• k _{mod}	
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg/m^3}$	445 •	• k _{mod}	445	• k _{mod}	
des	ign value of the axial loa	$\mathbf{d} \; \mathbf{X}_{\mathbf{d}} = \mathbf{X}_{k} / $		1	minimum valu	e of the rows	•	
	strength class	C18	$\rho_{\text{k}}=320~kg/m^3$	(7)(13)(24)	(7)(13)(24)	(7)(13)(24)	(7)(13)(24)	
	wood (EN 338)	C24	$\rho_k = 350 \ kg/m^3$	(7)(13)(25)	(3)(7)(16)	(3)(7)(16)	(3)(7)(16)	
	board span b	·		600				
	fixing distance a (corre-	sponds with b	eff in Fig. 1)		Type S: 140	5 / XL : 277		

[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 22,5/6 = 3,2 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$


[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

	ble 8: Lines ² 10 mm -			-			for the
	mbination nail 2,7x27 and	tongue 6,3	mm, with $\alpha \ge 30^\circ$ [e]	corrected for	f ₀₅ declared (2	27 N/mm²).	
То	ngue of Lines ² 10 mm			6,3 mm			
loc	ation of the fixing in the pa	anel		M-centre	M-centre (1 nail) C-corner (1 nail)		
Pa	nel type			S	XL	S	XL
pull-through N (corrected for $f_{05} = 27 N/mm^2$)					•		
	characteristic pull-through	n N		385	385	408	408
	material factor ROCKPA				,0	2	2,0
	design value X_d of the pul	l-through N		193	193	204	204
wi	nd suction (corrected for fo	5 = 27 N/m r	n ²) single nail				
	average wind load in N/m ²			2895	1768	5243	3400
	average strength N	325	377	241	297		
	material factor ROCKP	ANEL M	manufacturers declaration)	2	,0	2	,0
	design value X_d of the p	ull-through	Ν	163	189	121	149
wit	hdrawal capacity (for the c	alculation s	ee Annex D-1)				
	characteristic withdrawal	capacity Fa	их,к,Rk [b] [d]				
	strength class	C18	$\rho_{\text{k}} = 320 \text{ kg/m}^3$	154 [b]		154 [b]	
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg/m^3}$	184 [b]		184 [b]	
		modifie	cation factor for kmod	k _{mod} [a]			
	axial withdrawal capacity	/ Fax,k,Rk . km	_{od} [a] [b] [d]				
	strength class	C18	$\rho_{\text{k}} = 320 \text{ kg/m}^3$	154	• k _{mod}	154 • k _{mod}	
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg}/{\rm m}^3$	184	• k _{mod}	184	• k _{mod}
	material factor (NA	to) EN 1995	5-1-1 §2.4.1		$\gamma_{\rm M} = 1,30$ [with	drawal capacity]
	design value X_d of the ax	ial withdray	val capacity N	•			
	strength class	C18	$\rho_{\rm k}=320~kg/m^3$	119	• k _{mod}	119	• k _{mod}
	wood (EN 338)	C24	$\rho_{\text{k}}=350 \; kg/m^3$	142	• k _{mod}	142	• k _{mod}
de	sign value of the axial loa	$\mathbf{d} \; \mathbf{X}_{\mathbf{d}} = \mathbf{X}_{k} / $	үм N	n	ninimum valu	ie of the row	s:
	strength class	C18	$\rho_{\text{k}}=320~kg/m^3$	(7)(13)(24)	(7)(13)(24)	(7)(13)(24)	(7)(13)(24)
	wood (EN 338)	C24	$\rho_{\text{k}}=350~kg/m^3$	(7)(13)(25)	(7)(13)(25)	(7)(13)(25)	(7)(13)(25)
	board span b			600			
	fixing distance a (corres	ponds with	Deff in Fig. 1)		Type S: 140	5 / XL : 277	

[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

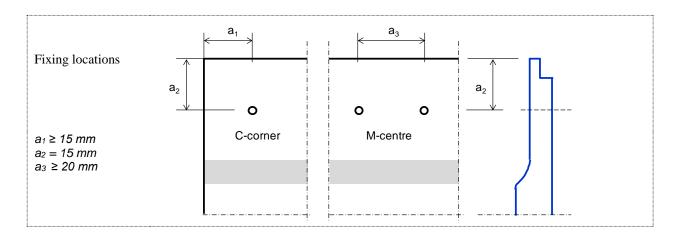

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 8 = 15, 5 / 8 = 1,94$ mm);

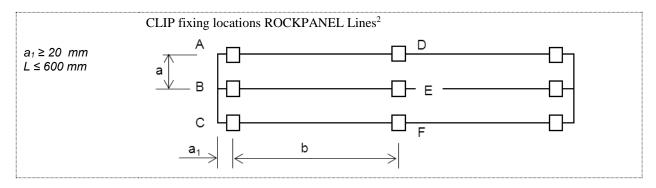
Table 9: Lines ² 10 mm -						for the
combination nail 2,7x27 and	tongue 6	,3 mm, with $\alpha \ge 30^\circ$ [e] corrected for			
Tongue of Lines ² 10 mm				,	mm	
location of the fixing in the p	anel		M-centre (2 nails)		C-corner(1 nail)	
Panel type			S	XL	S	XL
pull-through N (corrected for	$t_{05} = 27 N$	l/mm ²) single nail	T	1	1	
characteristic pull-through	n N		385	385	408	408
material factor ROCKPANEL γ_{M} (manufacturers declaration)				,0	2	,0
design value X_d of the pull-through N			193	193	204	204
wind suction (corrected for for	5 = 27 N/n	m^2) with double nail				
average wind load in N/m	average wind load in N/m ²			3264	5243	3400
average strength N			562	695	241	297
material factor ROCKPA	NEL <u>7M</u> (1	nanufacturers declaration)	2	,0	2	,0
design value X_d of the pul			281	348	121	149
withdrawal capacity						
characteristic withdrawal	capacity F	ax,k,Rk [b] [d]				
strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg}/{\rm m}^3$	154	[b]	154	[b]
wood (EN 338)	C24	$\rho_{\text{k}} = 350 \text{ kg/m}^3$	184	[b]	184	[b]
	modi	ication factor for kmod	k _{mod} [a]			
axial withdrawal capacity	Fax,k,Rk . kn	od [a] [b] [d]				
strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	154 • k _{mod}		154 • k _{mod}	
wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	184	• k _{mod}	184	• k _{mod}
material factor (NA	to) EN 19	95-1-1 §2.4.1		$\gamma_{\rm M} = 1,30$ [with	drawal capacity]
design value X_d of the axi	al withdra	wal capacity N				
strength class	C18	$\rho_{\text{k}}=320~kg/m^3$	119	• k _{mod}	119	• k _{mod}
wood (EN 338)	C24	$\rho_{\text{k}}=350 \ kg/m^3$	142	• k _{mod}	142	• k _{mod}
design value of the axial loa	$\mathbf{d} \ \mathbf{X}_d = X_{\mu}$	/ γ _M N	1	minimum valu	ie of the rows	:
strength class	C18	$\rho_{\text{k}} = 320 \text{ kg/m}^3$	(7)(12)(23)	(7)(12)(23)	(7)(12)(23)	(7)(12)(23)
wood (EN 338)	C24	$\rho_{\text{k}} = 350 \text{ kg/m}^3$	(7)(12)(24)	(7)(12)(24)	(7)(12)(24)	(7)(12)(24)
board span b		·	600			
fixing distance a (corres	sponds with	beff in Fig. 1)		Type S: 146 / XL : 277		

[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 8 = 15,5 / 8 = 1,94$ mm); [d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

Page 18 of 24 of European Technical Assessment no. ETA-13/0204

Annex 3.1


	nes ² S 8 , clip and rou	nu-top sei	ew 5,5x25 [0], with						
				Edge of panel			Middle of panel		
	cation of the clips			А	В	С	D	E	F
pu	lll-off N (corrected for		I/mm ²)			[[1
	characteristic pull-off			69	184	77	90	226	120
		ANEL (mar	nufacturers declaration)	1,3	2	2		2	2
	factor γ_{M} clip				0.0	20	1,3	110	
design value X_d of the pull-off N					92	39	69	113	60
wii	nd suction (corrected f		N/mm²)						
average wind load in N/m ²					3156			2426	
	average strength N				168	168	312	312	312
ĺ	material factor ROCK	KPANEL	γM		2,0) (manufactu	rers declarat	ion)	
Ì	design value X_d of the			84	84	84	156	156	156
wi	thdrawal capacity								
[characteristic withdra	wal capac	ity F _{ax,k,Rk} [c] [d]						
	strength class	511 [b]							
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$			549	[b]		
		modifica	ation factor for kmod			k _{mod}	[a]		
	axial withdrawal capa			- and [e]					
	strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg/m^3}$			511	kmod		
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \text{ kg/m}^3$			549			
	material factor (N			$\gamma_{\rm M} = 1,30$ [withdrawal capacity]					
	design value X_d of the	,	-	<u> </u>	1 141 -	1,00 [aramar cupa		
	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$			393 •	kmod		
	wood (EN 338)	C24	$\rho_{\rm k} = 320 \text{ kg/m}^3$				kmod		
de	sign value of the axia		. 0		min	imum valu		ows:	
	r the locations			А	В	C	D	E	F
				(7)(12)	(7)(12)	(7)(12)	(7)(12)	(7)(12)	(7)(12)
	strength class	C18	$\rho_{\text{k}} = 320 \text{ kg/m}^3$	(23)	(23)	(23)	(23)	(23)	(23)
				(7)(12)	(7)(12)	(7)(12)	(7)(12)	(7)(12)	(7)(12)
	wood (EN 338)	C24	ρ_k = 350 kg/m ³			(7)(12) (24)			
	board apon b		1						
	board span b		·	600 Type S: 151-156					
	fixing distance a (c	corresponds	S with Deff in Fig. 1)			Type S:	151-156		

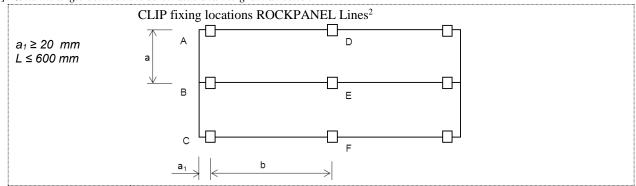
[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National

Annex of EN 1995-1-1 [b]: $\ell_{ef} \ge 21 \text{ mm}$ (penetration length of the threaded part)

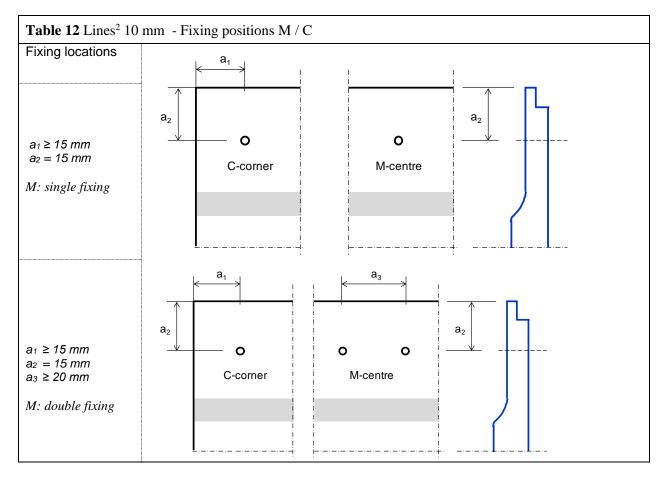
[c]: angle α between shaft and the wood grain: $\alpha \ge 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

Page 19 of 24 of European Technical Assessment no. ETA-13/0204


Annex 3.2

				Edge of panel			Middle of panel		
cation (of the clips			A	В	C	D	E	F
	N (corrected for	fo5 = 27 N	<i>l/mm</i> ²)			-			
	cteristic pull-off		,	69	184	77	90	226	120
mater	ial ROCKP	ANEL (m	anufacturers declaration)		2	2		2	2
	factor M clip						1,3		
design value X_d of the pull-off N					92	39	69	113	60
vind suct	tion (corrected fo	$r f_{05} = 27$	7 N/mm ²)						
avera	ge wind load in N	√m²			1914			1171	
avera	ge strength N			184	184	184	272	272	272
mater	ial factor (NA to)) EN 199	5-1-1 §2.4.1		2	2,0 (manufactu	rers declaratio	n)	
desig	n value X_d of the	pull-thro	ugh N	92	92	92	136	136	136
ithdraw	al capacity								
chara	cteristic withdraw	val capac	ity F _{ax,k,Rk} [c] [d]						
st	rength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	511 [b]					
W	ood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$			549	[b]		
		modifica	ation factor for kmod	k _{mod} [a]					
axial	withdrawal capac	ity F _{ax.k.R}	k, k _{mod} [a] [c] [d]						
	rength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$			511 •	kmod		
	ood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$						
	aterial factor (NA			$549 \bullet k_{mod}$ $\gamma_{M} = 1,30 \text{ [withdrawal capacity]}$					
	```	/	hdrawal capacity N		111	1,00 [	ina manga		
	rength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$			393 •	kmod		
	ood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$			422 •			
	alue of the axial				min	imum valu		ows:	
or the lo			SKI IMIT	А	В	C	D	E	F
		<b>G10</b>		(3)(7)	3)(7)	3)(7)	(3)(7)	3)(7)	3)(7)
stren	igth class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(15)	(15)	(15)	(15)	(15)	(15)
	1 (EN 220)	<b>C</b> 24	0501 / 2	(3)(7)	(3)(7)	(3)(7)	(3)(7)	(3)(7)	(3)(7)
W000	d (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(16)	(16)	(16)	(16)	(16)	(16)
board span b				600					
300	fixing distance a (corresponds with b _{eff} in Fig. 1)								


[a]: modification factor  $k_{mod}$  depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1 [b]:  $\ell_{ef} \ge 21 \text{ mm}$  (penetration length of the threaded part)

[c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 30^{\circ}$ 

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)



# **Fixing positions**



<b>C</b> i	Diame	nm for Lines ² 10 mm type <b>S 10</b> and <b>XL 10</b> Diameter hole					
fixing	M – middle of the panel	Other locations					
nail	2,0	3,0					
screw	2,5	3,5 ^{a)}					
_		1					

^{a)} The consequence of these diameters is that under certain circumstances a tension perpendicular to the shafts of the fixings in the fixing locations can occur.

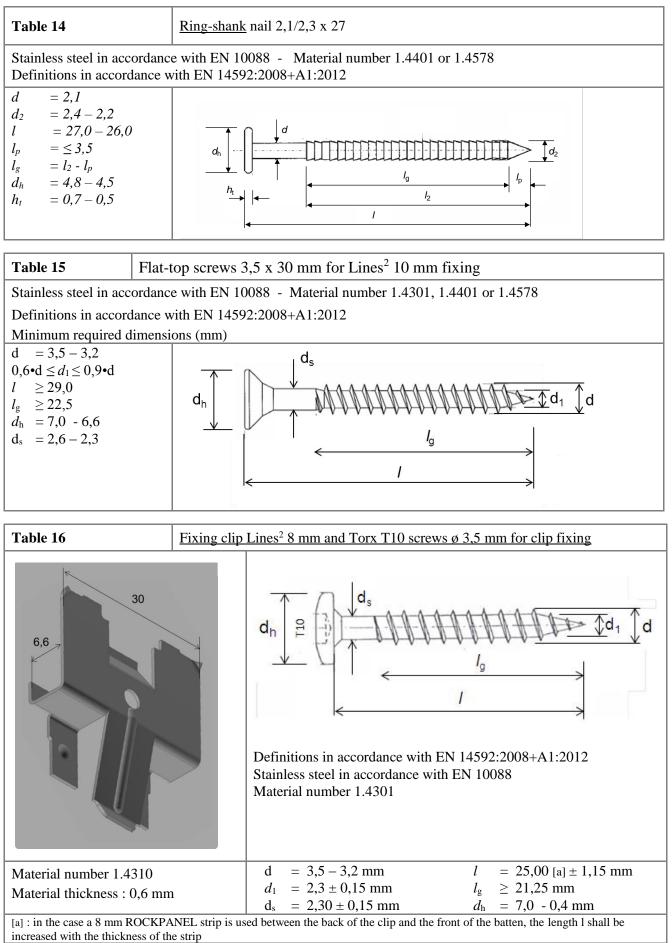



Table 17 - Control plan for the manufacturer

		Test or control		Minimum	Minimum
Nr	Subject/type of control	method	Criteria, if any	number of samples	frequency of control
(1)	(2)	(3)	(4)	(5)	(6)
	[including		roduction control (FPC) in accordance with a prese	cribed test pla	n]*
1	Board thickness	EN 325	8 ± 0,5 mm 10 ± 0,5 mm	40 [a]	One board for every 200 boards produced
2	Density	EN 323	1050 -150 / +150 kg/m ³	40 [a]	One board for every 200 boards produced
3	Bending strength dry parallel and perpendicular to the production direction	EN 310	f ₀₅ ≥ 27 N/mm²	20 (length) + 20 (width) [a]	One board for every 200 boards produced
4	Bending strength after ageing parallel and perpendicular to the production direction	EN 310 Ageing in accordance with description in Table 13	lowest individual strength f ≥ 22 N/mm²	3 (length) + 2 (width)	One board for every 200 boards produced
5	Water absorption after 4 days	see Table 13	≤ 2 weight % after 4 days; if sample fails, the 2 nd sample must be tested.	1 (2 in the case of fail)	One board for every 200 boards produced
6	Organic material content (resin binder)	Glowing at 650° for at least 60 min. <i>Remark: time</i> <i>depends on the</i> <i>type of oven</i>	12 ± 1,5 weight %	40 [a]	One board for every 200 boards produced
7	Reaction to fire [b]	EN 13162 loss on ignition Table B.2	Table 4 EN 13501-1	Three specimen [b]	every two years
	ow mentioned controcturer as part of his		ne sub-supplier and the docume	ntation is mainta	ined by the board
8	Dowel-type fastene structures		EN 14592, Annex ZA.2 Procedure for attestation of co	onformity	Every 3 years
	-	four different boards			
[b] Sma TR 021		g. gaskets and seals	shall be considered on the ba	asis of EOTA T	echnical Report

# Bending strength after ageing Ageing of the 5 test pieces in (tab) water from 70°C ( with surface tension changing additives : for instance 0,5 ml Triton per litre) for 30 minutes. Determination of the bending strength in accordance with EN-310 within 20 minutes after the ageing period in a test room with an air temperature between 17 and 23°C. Water absorption The water absorption by the edges must be determined on test pieces W1 in the size 50*400 mm. The dimensions and the weight of the test pieces is determined. The sample is wrapped with aluminum foil with the exception of one 50 mm edge. The test pieces are vertically placed in a bucket with tab water, with the 50 mm size without aluminum foil horizontally in the water. The edge must be 1 to 5 mm in the water (without additives). Test conditions: Water temperature 17 - 23 °C 17 - 23 °C Room temperature alu-foil test piece W1 50 mm edge not covered ☆ depth 1 to 5 mm water

#### Table 18 - Special methods of control and testing used for the evaluation

# Table 19 - Control plan for the notified body (bodies)

Nr	NrSubject/type of controlTest or control methodCriteria, if anyMinimum number of samplesMinimum frequence of control								
(1)	(1) (2) (3) (4) (5) (6)								
	Initial type-testing of the product (ITT)								
1	1 Testing to determine the product performance has been carried out under the responsibility of the TAB as part of the procedure to issue the ETA								
]	initial inspection of factory and	l factory pro	duction control (	FPC)					
1	See Table 17								
Continuous	Continuous surveillance, judgment and assessment of factory production control (FPC)								
1	See Table 17								

# Table 20 – Impact resistance : Definition of use categories

Use category	Description
Ι	A zone readily accessible at ground level to the public and vulnerable to hard body impacts but not subjected to abnormally rough use.
п	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care.
Ш	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects.
IV	A zone out of reach from ground level

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.